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Outline

Multigrid: a 30-second introduction

The scalar Newton's method

Newton's method for systems

Multigrid for Newton's method: Newton-MG
Nonlinear multigrid: full approximation storage (FAS)

Numerical examples of Newton-MG and FAS
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The 1-d Model Problem

+ Poisson's equation: —Au =/ in[0,1], with boundary
conditions u(0) =u(1) =0 .

Discretized as:

2
=+ 24— =Hf; ug = uy = 0

* Leads to the Matrix equation Au =f , where
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Weighted Jacobi Relaxation

 Consider the iteration:

u(new) « (1-w) ulold) %( ulold) 4 y(old) 4 p2f )

+ Letting A = D-L-U, the matrix form is:

u(new) = [(1—@)“ oD (L+U) }u(olaﬁ +oh’D
= Rou(0d) 4+ oh’D "y

. Tt is easy to see that if e = u(evach _,(@PProY)

. then
elnew) _ R@e( old)
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Relaxation Smoothes the Error

Initial error

.AA/\/\NAA/\ -

vy \/wwv\/vv

Error after 35 iteration sweeps:

Many relaxation
schemes
have the smoothing
property, where
oscillatory
modes of the error
are
eliminated
effectively, but
smooth modes are
damped
very slowly.
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Smooth error can be represented
accurately on a coarse grid

A smooth function:

os | /
-1

0 0 .5 1

Can be represented by linear
interpolation from a coarser grid:

On the coarse grid, the
smooth error appears to
be relatively higher in
frequency: in the example
it is the 4-mode, out of
a possible 16, on the fine
grid, 1/4 the way up the
spectrum. On the coarse
grid, it is the 4-mode out
of a possible 8, hence it
is 1/2 the way up the
spectrum.

Relaxation will be more
effective on this mode if
done on the coarser grid!!
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- Perform relaxation on A4

Coarse-grid Correction

" = £ on fine grid until

error is smooth.

+ Compute residual, #=f"—4"/' and transfer to the

coarse grid ,2h — [ k.

» Solve the coarse-grid residual equation to obtain
the error:

AP h =2 2h =gy

* Interpolate the error to the fine grid and correct

the fine-grid solution:
ul «— ul + ]gh el
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Coarse-grid Correction

Relax onA w h Correct

h h h
Compute _fh—AhL/7 ' —ut + '@

Interpolate
h 2k
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Tools Needed

- Interpolation and restriction operators:

0.5
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0.5 0.5 010 0.25 1.0 0.25
= 1.0 , I,fh—[ 010 ] 7 —[ 0.25 1.0 0.25 }
0.5 0.5 010 0.25 1.0 0.25
1.0
0.5
Linear Injection Full-weighting

Interpolation

- Coarse-grid Operator 4°" . Two methods:
(1) Discretize equation at larger spacing
(2) Use Galerkin Formula:

2h 2h h +h
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Recursion: the (v ,0) V-cycle

*  Major question: How do we "solve” the coarse-grid
residual equation? Answer: recursion!

‘uh<— GV(Ah,fh) ulh—uh + el
‘ u2h GV(Azh,fzh) uZh  y2h 4 eZh'
4h 2h 2k o
[ Iy, — A4 yh) o2h 4;;”4;1
8h 8 4h 4h
7 Ty ORY — A4 u ) e Ay u®
uSh G (4%, f3) @ uth e udh 4+ 8
0’ ’Q
0’ ’Q
IR R
0” R
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Multigrid uses coarse grids to damp
out smooth error components

Finest Grid

A Multigrid V-cycle \

Prolongation- \
transfer from coarse to fine grid \

Restriction- A

transfer from fine to coarse grid \ Q

First Coarse Grid

K; Note:

smaller grid
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Nested Iteration

Idea: It's cheaper to solve a problem (i.e., fakes
fewer iterations) if the initial guess is good.

How to get a good initial guess:
— Interpolate coarse solution to fine grid.
— “Solve” the problem on the coarse grid first.

— Use interpolated coarse solution as initial guess on
fine grid.

e Combined with the V-cycle as the solver this defines
the Full Multigrid (FMG) cycle.
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Full Multigrid (FMG)

- Restriction =
+ Interpolation ==

» High-order Interpolation == ’0
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Nonlinear Problems

* How should we approach the nonlinear system

A(u) =f

and can we use multigrid to solve such a system?

» A fundamental relation that multigrid relies on,
the residual equation

Au —Av =f —Av => Ae =r

does not hold, since, if A(u) is a nonlinear
operator,

A(u) —A(v) # A(e)
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The Nonlinear Residual Equation

+ We still base our development around the residual
equation, now the nonlinear residual equation:

A(u) = f
A(u) —A(v) =f —A(v)
A(u) —A(v) =r

»+ How can we use this equation as the basis for a
solution method?
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Let's consider Newton's Method

* The best known and most important method for
solving nonlinear equations!

- We wish to solve F(x) = 0.

+ Expand £ in a Taylor series about x:

F(x+s) = F(x) +sF'(x) + s?F" (&)

- Dropping higher order terms, if x+sis a solution,

0=F(s) +sF'(x) s = —F(x)/ F'(x)
+ Hence, we develop an iteration
F(x)
X < X —

F'(x)
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Newton's method for systems

+ We wish to solve the system A(u) = 0. In vector
form this is
S(uy, uy, ooy upy) 0

A(u) = fz(ul,u?,...,uN) _ .O

0
fN(I/ll, I/lz, cees MN)

+ Expanding A(v+e)in a Taylor series about v:

A(v+e) = A(v) + J(v)e + higher order terms
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Newton for systems (cont.)
* Where J(v)is the Jacobian system

afy ofy

of » 0f»
J(V) = 5141 auz

of y Of N

of
8”N
8]”2

aMN

of

aMN

U=y

- If u-v+eis asolution, 0= A(v)+ J(v) e and

e = —[an ] Ao

» Leading to the iteration

R I
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Newton's method in terms of the
residual equation

» The nonlinear residual equation is

A(v+e) —A(v)=r

- Expanding A(v+e)in a two-term Taylor series about v:

A(v) +J(v)e —A(v) =r
J(v)e=r

- Newton's method is thus:

r=f —A(v)
V <« V + [J(v)}_lr
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How does multigrid fit in?

* One obvious method is to use multigrid to solve
J(v)e = r at each iteration step. This method is
called Newton-multigrid and can be very effective.

+ However, we would like to use multigrid ideas to
treat the nonlinearity directly.

* Hence, we need to specialize the multigrid
components (relaxation, grid transfers,
coarsening) for the nonlinear case.
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What is nonlinear relaxation?

- Several of the common relaxation schemes have
nonlinear counterparts. For A(u)=f, we describe
the nonlinear Gauss-Seidel iteration:

- Foreach j=1,2, .., N

+ Set the jth component of the residual to zero and solve for
v;. That is, solve (A(v)) = 7.

+ Equivalently,
- Foreach j=1,2, .., N
- Find s ¢ % such that

(A(VJFng))j :fj

where &; is the canonical j7/4 unit basis vector
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How is nonlinear Gauss-Seidel done?

+ Each (4(v)); = f; is a nonlinear scalar equation for
v;. We use the scalar Newton's method to solve!

. Example: —u" (x) +u(x) ") =7, may be
discretized so that (4(v)); = f; is given by

Vi1t v 1<j<N-1
+Vje]:fj

hz

* Newton iteration for v;is given by

—Vi_j +2vj—vj+1

V.
LV .
.2 tve vy

Vi V= 5

Zr el (1+v)
L2 J
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How do we do coarsening for
nonlinear multigrid?

» Recall the nonlinear residual equation

A(v+e) —A(v) =r

* In multigrid, we obtain an approximate solution v 7
on the fine grid, then solve the residual equation
on the coarse grid.

+ The nonlinear residual equation on Q%" appears as

AZh(vzh +62h) —AZh(vzh) — ;2h
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Look at the coarse residual equation

- We must evaluate the quantities on Q*'in

Azh(v2h +62h) _Azh(v2h) _ I,Zh

* Given v/, a fine-grid approximation, we restrict
the residual to the coarse grid

P2 = Iy (1 = A" (o)

- For vZ we restrict v/ by v2h = 2"/
* Thus,

APV w2y = 4 (Y (T - ATy )
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We've obtained a coarse-grid
equation of the form 4 (u?) =

- Consider the coarse-grid residual equation:

AP (B v ey = AT (VY (11 - Ay )

— = ~
—_—
1 2h f2h
coarse-grid unknown All quantities are known

. We solve 4% (u?) =P for u?h = 1"vh 1 21 gnd
obtain

e2h — 2h _ ]%h v

* We then apply the correction:
h — yh o ph 2k
vi =vt+ 15 e
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FAS, the Full Approximation
Scheme, two grid form

. . h h
. Perform nonlinear relaxation on 4" (u") =f" to

obtain an approximation v’ .

» Restrict the approximation and its residual
2h_[2h h I,Zh:[}%h(fh —A(Vh))
» Solve the coarse-grid residual problem
AZh(uzh) _ Azh(v%) 1 p2h

» Extract the coarse-grid error
o2h — 2h _ ,2h

» Interpolate and apply the correction
ph = yh 4 [h 2h
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FAS, the Full Approximation
Scheme, two grid form

Nonlinear . h Interpolate & Correct
: 4 _
Relaxationon A4 (u") =f oho— yh g [élh 2h@

\ Res;ltrict Extract )
r2h=[h —A(vh)) e2h =u2h—]h ph
h Izh

'*‘

Azh(u2h) :Azh(v%) 4 p2h
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A few observations about FAS

+ If Aisalinear operator then FAS reduces directly to
the linear two-grid correction scheme.

+ A fixed point of FAS is an exact solution to the fine-
grid problem and an exact solution to the fine-grid
problem is a fixed point of the FAS iteration.
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A few observations about FAS,
continued

- The FAS coarse-grid equation can be written as

A2y = Ay gk

where T%h is The so-called tau correction.

+ Ingeneral, since " #0, the solution u? to the
FAS coarse-grid equation is not the same as the
solution to the original coarse-grid problem

AZh( uzh) :f2h

* The tau correction may be viewed as a way to alter
the coarse-grid equations to enhance their

approximation properties. 2o o 38



Still more observations about
FAS

* FAS may be viewed as an inner and outer iteration:

the outer iteration is the coarse-grid correction,
the inner iteration the relaxation method.

» A true multilevel FAS process is recursive, using
FAS to solve the nonlinear Q% problem using Q.
Hence, FAS is generally employed in a V- or W-
cycling scheme.

30 of 38



And yet more observations about
FAS!

* For linear problems we use FMG to obtain a good
initial guess on the fine grid. Convergence of
nonlinear iterations depends critically on having a
good initial guess.

* When FMG is used for nonlinear problems the
interpolant ]fh u2h is generally accurate enough to
be in the basin of attraction of the fine-grid
solver.

* Thus, one FMG cycle, whether FAS, Newton, or
Newton-multigrid is used on each level, should

provide a solution accurate to the level of
discretization, unless the nonlinearity is extremely
strong. 31 of 38



Intergrid transfers for FAS

* Generally speaking, the standard operators (linear
interpolation, full weighting) work effectively in
FAS schemes.

* In the case of strongly nonlinear problems, the
use of higher-order interpolation (e.g., cubic
interpolation) may be beneficial.

» For an FMG scheme, where Ih 21 is the
interpolation of a coarse-grid SO|UTIOH to become a
fine-grid initial guess, higher-order interpolation
is always advised.
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What is AZh(u%) in FAS?

» As in the linear case, there are two basic possibilities:

Azh( 1) is determined by discretizing the nonlinear
opera’ror A(u) in the same fashion as was employed to
obtain 4" (u"), except that the coarser mesh spacing
IS used.

A" (u?) is determined fr'om ’rhe Galerkin condition
2h h
A7y = 1" A" (") 1,
where the action of the Galerkm product can be
captured in an implementable formula.

+ The first method is usually easier, and more common.
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Nonlinear problems: an example

- Consider

—Au(x,y) +vyu(x,y) e" (x.) =f(x,))

on the unit square [0,1] x [0,1] with homogeneous
Dirichlet boundary conditions and a reqular
Cartesian grid.

- Suppose the exact solution is
u(x,y) = (x2=x7) sin(3my)
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Discretization of nonlinear example

» The operator can be written (sloppily) as
h

1
1 3
[__1 ’ _1]’43+V“£je%” =1

h2
g 1 J
Y
Ah(uh)
* The relaxation is given by
(A" —f
uh o oyl — o

l,] l,J] 4 U
_ e bl
e +y(l+ug;)e
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FAS and Newton's method on

—Au(x,y) +yu(x,y) " = f(x,p)

- FAS
i
1 10 100 1000
convergence factor| 0.135 0.124 0.098 0.072
number of FAS cycles 12 11 11 10
- Newton's Method
)i
1 10 100 1000

convergence factor| 4.00E-05 7.00E-05 3.00E-04 2.00E-04
number of Newton iterations 3 3 3 4
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Newton, Newton-MG&, and FAS on
—Au(x,y) +yu(x,y) e = f(x,y)

Newton uses exact solve, Newton-MG is inexact Newton with
a fixed number of inner V(2,1)-cycles the Jacobian problem,
overall stopping criterion |r[,<10""

Outer Inner
Method| iterations | iterations [Megaflops
Newton 3 1660.6
New ton-MG 3 20 56.4
New ton-MG 4 10 38.5
New ton-MG o 5 25.1
New ton-MG 10 2 22.3
New ton-MG 19 1 24.6
FAS 11 27.1
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Comparing FMG-FAS and FMG-Newton

—Au(x,y) +yu(x,y) ") = f(x,y)

We will do one FMG cycle using a single FAS V(2,1) -
cycle as the "solver” at each new level. We then
follow that with sufficiently many FAS V(2,1)-cycles
as is necessary to obtain ||r|| < 101,

Next, we will do one FMG cycle using a Newton-
multigrid step at each new level (with a single linear
V(2,1)-cycle as the Jacobian "solver.”") We then
follow that with sufficiently many Newton-multigrid
steps as is hecessary to obtain ||r|| < 10-1,
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Comparing FMG-FAS and FMG-Newton

—Au(x,y) +yu(x,y) ") = f(x,y)

Cycle
FMG-FAS
FAS V
FAS V
FAS V
FAS V
FAS V
FAS V
FAS V
FAS V

1]

1.10E-02
6.80E-04
5.00E-05
3.90E-06
3.20E-07
3.00E-08
2.90E-09
3.00E-10
3.20E-11

le™ |
2.00E-05
2.40E-05
2.49E-05
2.49E-05
2.49E-05
2.49E-05
2.49E-05
2.49E-05
2.49E-05

Mflops
3.1
5.4
7.6
9.9
12.2
14.4
16.7
18.9
21.2

I ]

1.06E-02
6.70E-04
5.10E-05
6.30E-06
1.70E-06
5.30E-07
1.70E-07
5.40E-08
1.70E-08
5.50E-09
1.80E-09
5.60E-10
1.80E-10
5.70E-11

e

2.50E-05
2.49E-05
2.49E-05
2.49E-05
2.49E-05
2.49E-05
2.49E-05
2.49E-05
2.49E-05
2.49E-05
2.49E-05
2.49E-05
2.49E-05
2.49E-05

Mflops
2.4
4.1
5.8
7.5
9.2

10.9
12.6
14.3
16.0
17.7
19.4
21.1
22.8
24.5

Cycle
FMG-Newton
Newton-MG
Newton-MG
Newton-MG
Newton-MG
Newton-MG
Newton-MG
Newton-MG
Newton-MG
Newton-MG
Newton-MG
Newton-MG
Newton-MG
Newton-MG

39 of 38



Conclusions

* Multigrid can be used for nonlinear problems
either by using an inexact Newton's method with
multigrid as the Jacobian system solver or by
using FAS to perform multigrid processing
directly on the nonlinear system.

- The choice of Newton-MG versus FAS is best

made with consideration of the cost of nonlinear
evaluations; performance of the two methods is
often similar.

» Ineither case FMG type cycling should be used.
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